About: Abstract Arteriviruses infect immune cells and may cause persistence in infected hosts. Inefficient induction of pro-inflammatory cytokines and type I IFNs are observed during infection of this group of viruses, suggesting that they may have evolved to escape the host immune surveillance for efficient survival. Recent studies have identified viral proteins regulating the innate immune signaling, and among these, nsp1 (nonstructural protein 1) is the most potent IFN antagonist. For porcine reproductive and respiratory syndrome virus (PRRSV), individual subunits (nsp1α and nsp1β) of nsp1 suppress type I IFN production. In particular, PRRSV-nsp1α degrades CREB (cyclic AMP responsive element binding)-binding protein (CBP), a key component of the IFN enhanceosome, whereas PRRSV-nsp1β degrades karyopherin-α1 which is known to mediate the nuclear import of ISGF3 (interferon-stimulated gene factor 3). All individual subunits of nsp1 of PRRSV, equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV) appear to contain IFN suppressive activities. As with PRRSV-nsp1α, CBP degradation is evident by LDV-nsp1α and partly by SHFV-nsp1γ. This review summarizes the biogenesis and the role of individual subunits of nsp1 of arteriviruses for innate immune modulation.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Arteriviruses infect immune cells and may cause persistence in infected hosts. Inefficient induction of pro-inflammatory cytokines and type I IFNs are observed during infection of this group of viruses, suggesting that they may have evolved to escape the host immune surveillance for efficient survival. Recent studies have identified viral proteins regulating the innate immune signaling, and among these, nsp1 (nonstructural protein 1) is the most potent IFN antagonist. For porcine reproductive and respiratory syndrome virus (PRRSV), individual subunits (nsp1α and nsp1β) of nsp1 suppress type I IFN production. In particular, PRRSV-nsp1α degrades CREB (cyclic AMP responsive element binding)-binding protein (CBP), a key component of the IFN enhanceosome, whereas PRRSV-nsp1β degrades karyopherin-α1 which is known to mediate the nuclear import of ISGF3 (interferon-stimulated gene factor 3). All individual subunits of nsp1 of PRRSV, equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV) appear to contain IFN suppressive activities. As with PRRSV-nsp1α, CBP degradation is evident by LDV-nsp1α and partly by SHFV-nsp1γ. This review summarizes the biogenesis and the role of individual subunits of nsp1 of arteriviruses for innate immune modulation.
subject
  • Virology
  • Hemorrhagic fevers
  • Immune system
  • Genetics
  • Cytokines
  • Antivirals
  • Animal virology
  • Immunostimulants
  • Arteriviridae
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software