About: Frameshifting during translation of viral or in rare cases cellular mRNA results in the synthesis of proteins from two overlapping reading frames within the same mRNA. In HIV-1 the protease, reverse transcriptase, and integrase enzymes are in a second reading frame relative to the structural group-specific antigen (gag), and their synthesis is dependent upon frameshifting. This ensures that a strictly regulated ratio of structural proteins and enzymes, which is critical for HIV-1 replication and viral infectivity, is maintained during protein synthesis. The frameshift element in HIV-1 RNA is an attractive target for the development of a new class of anti HIV-1 drugs. However, a number of examples are now emerging of human genes using −1 frameshifting, such as PEG10 and CCR5. In this study we have compared the HIV-1 and PEG10 frameshift elements and shown they have distinct functional characteristics. Frameshifting occurs at several points within each element. Moreover, frameshift modulators that were isolated by high-throughput screening of a library of 114,000 lead-like compounds behaved differently with the PEG10 frameshift element. The most effective compounds affecting the HIV-1 element enhanced frameshifting by 2.5-fold at 10 μM in two different frameshift reporter assay systems. HIV-1 protease:gag protein ratio was affected by a similar amount in a specific assay of virally-infected cultured cell, but the modulation of frameshifting of the first-iteration compounds was not sufficient to show significant effects on viral infectivity. Importantly, two compounds did not affect frameshifting with the human PEG10 element, while one modestly inhibited rather than enhanced frameshifting at the human element. These studies indicate that frameshift elements have unique characteristics that may allow targeting of HIV-1 and of other viruses specifically for development of antiviral therapeutic molecules without effect on human genes like PEG10 that use the same generic mechanism.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Frameshifting during translation of viral or in rare cases cellular mRNA results in the synthesis of proteins from two overlapping reading frames within the same mRNA. In HIV-1 the protease, reverse transcriptase, and integrase enzymes are in a second reading frame relative to the structural group-specific antigen (gag), and their synthesis is dependent upon frameshifting. This ensures that a strictly regulated ratio of structural proteins and enzymes, which is critical for HIV-1 replication and viral infectivity, is maintained during protein synthesis. The frameshift element in HIV-1 RNA is an attractive target for the development of a new class of anti HIV-1 drugs. However, a number of examples are now emerging of human genes using −1 frameshifting, such as PEG10 and CCR5. In this study we have compared the HIV-1 and PEG10 frameshift elements and shown they have distinct functional characteristics. Frameshifting occurs at several points within each element. Moreover, frameshift modulators that were isolated by high-throughput screening of a library of 114,000 lead-like compounds behaved differently with the PEG10 frameshift element. The most effective compounds affecting the HIV-1 element enhanced frameshifting by 2.5-fold at 10 μM in two different frameshift reporter assay systems. HIV-1 protease:gag protein ratio was affected by a similar amount in a specific assay of virally-infected cultured cell, but the modulation of frameshifting of the first-iteration compounds was not sufficient to show significant effects on viral infectivity. Importantly, two compounds did not affect frameshifting with the human PEG10 element, while one modestly inhibited rather than enhanced frameshifting at the human element. These studies indicate that frameshift elements have unique characteristics that may allow targeting of HIV-1 and of other viruses specifically for development of antiviral therapeutic molecules without effect on human genes like PEG10 that use the same generic mechanism.
subject
  • Virology
  • RNA
  • Genetics
  • Metabolism
  • Gene expression
  • RNA splicing
  • Cis-regulatory RNA elements
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software