AttributesValues
type
value
  • In times of crisis, identifying the essential needs is a crucial step to providing appropriate resources and services to affected entities. Social media platforms such as Twitter contain vast amount of information about the general public's needs. However, the sparsity of the information as well as the amount of noisy content present a challenge to practitioners to effectively identify shared information on these platforms. In this study, we propose two novel methods for two distinct but related needs detection tasks: the identification of 1) a list of resources needed ranked by priority, and 2) sentences that specify who-needs-what resources. We evaluated our methods on a set of tweets about the COVID-19 crisis. For task 1 (detecting top needs), we compared our results against two given lists of resources and achieved 64% precision. For task 2 (detecting who-needs-what), we compared our results on a set of 1,000 annotated tweets and achieved a 68% F1-score.
subject
  • Firefox OS software
  • Public relations
  • Stable distributions
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software