About: India locked down 1.3 billion people on March 25, 2020 in the wake of COVID-19 pandemic. The economic cost of it was estimated at USD 98 billion, while the social costs are still unknown. This study investigated how government formed reactive policies to fight coronavirus across its policy sectors. Primary data was collected from the Press Information Bureau (PIB) in the form press releases of government plans, policies, programme initiatives and achievements. A text corpus of 260,852 words was created from 396 documents from the PIB. An unsupervised machine-based topic modelling using Latent Dirichlet Allocation (LDA) algorithm was performed on the text corpus. It was done to extract high probability topics in the policy sectors. The interpretation of the extracted topics was made through a nudge theoretic lens to derive the critical policy heuristics of the government. Results showed that most interventions were targeted to generate endogenous nudge by using external triggers. Notably, the nudges from the Prime Minister of India was critical in creating herd effect on lockdown and social distancing norms across the nation. A similar effect was also observed around the public health (e.g., masks in public spaces; Yoga and Ayurveda for immunity), transport (e.g., old trains converted to isolation wards), micro, small and medium enterprises (e.g., rapid production of PPE and masks), science and technology sector (e.g., diagnostic kits, robots and nano-technology), home affairs (e.g., surveillance and lockdown), urban (e.g. drones, GIS-tools) and education (e.g., online learning). A conclusion was drawn on leveraging these heuristics are crucial for lockdown easement planning.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • India locked down 1.3 billion people on March 25, 2020 in the wake of COVID-19 pandemic. The economic cost of it was estimated at USD 98 billion, while the social costs are still unknown. This study investigated how government formed reactive policies to fight coronavirus across its policy sectors. Primary data was collected from the Press Information Bureau (PIB) in the form press releases of government plans, policies, programme initiatives and achievements. A text corpus of 260,852 words was created from 396 documents from the PIB. An unsupervised machine-based topic modelling using Latent Dirichlet Allocation (LDA) algorithm was performed on the text corpus. It was done to extract high probability topics in the policy sectors. The interpretation of the extracted topics was made through a nudge theoretic lens to derive the critical policy heuristics of the government. Results showed that most interventions were targeted to generate endogenous nudge by using external triggers. Notably, the nudges from the Prime Minister of India was critical in creating herd effect on lockdown and social distancing norms across the nation. A similar effect was also observed around the public health (e.g., masks in public spaces; Yoga and Ayurveda for immunity), transport (e.g., old trains converted to isolation wards), micro, small and medium enterprises (e.g., rapid production of PPE and masks), science and technology sector (e.g., diagnostic kits, robots and nano-technology), home affairs (e.g., surveillance and lockdown), urban (e.g. drones, GIS-tools) and education (e.g., online learning). A conclusion was drawn on leveraging these heuristics are crucial for lockdown easement planning.
subject
  • Community building
  • Problem solving methods
  • Currencies of British Overseas Territories
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software