AttributesValues
type
value
  • Functional networks are a powerful extension of neural networks where the scalar weights are replaced by neural functions. This paper concerns the problem of parametric learning of the associative model, a functional network that represents the associativity operator. This problem can be formulated as a nonlinear continuous least-squares minimization problem, solved by applying a swarm intelligence approach based on a modified memetic self-adaptive version of the firefly algorithm. The performance of our approach is discussed through an illustrative example. It shows that our method can be successfully applied to solve the parametric learning of functional networks with unknown functions.
subject
  • Classification algorithms
  • Optimization algorithms and methods
  • Concepts in the philosophy of mind
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software