About: The purpose of this study was to investigate the effects of voids in tall buildings on the surrounding wind environment. With the development of modular technology, there has been a new method of building high-rise buildings. Currently, more and more high-rise buildings often use void spaces to reduce the wind resistance and utilize wind turbines by using wind power to create sky gardens. In this study, CFD (computer fluid dynamic) technology was used to simulate the wind environment around the buildings. The research focuses on the size, distribution and quantity of the concavity, which usually is defined as sky gardens. It is found that when the area of the opening is the same, the more number of opening, the more strengthened and distributed vertical wind velocity behind the building can be. The wind shadow area at the pedestrian height is further reduced. For holes distribution, the optimum ratio of the spacing between concavities to the void size for wind environment of tall buildings ranges from 1 to 3, which can disperse the surrounding heat in more efficiency and weaken the wind velocity in the lowest level. Therefore, in high-rise buildings, the number and distribution of the openings will have different effects on the wind environment around the buildings.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The purpose of this study was to investigate the effects of voids in tall buildings on the surrounding wind environment. With the development of modular technology, there has been a new method of building high-rise buildings. Currently, more and more high-rise buildings often use void spaces to reduce the wind resistance and utilize wind turbines by using wind power to create sky gardens. In this study, CFD (computer fluid dynamic) technology was used to simulate the wind environment around the buildings. The research focuses on the size, distribution and quantity of the concavity, which usually is defined as sky gardens. It is found that when the area of the opening is the same, the more number of opening, the more strengthened and distributed vertical wind velocity behind the building can be. The wind shadow area at the pedestrian height is further reduced. For holes distribution, the optimum ratio of the spacing between concavities to the void size for wind environment of tall buildings ranges from 1 to 3, which can disperse the surrounding heat in more efficiency and weaken the wind velocity in the lowest level. Therefore, in high-rise buildings, the number and distribution of the openings will have different effects on the wind environment around the buildings.
subject
  • Wind
  • Computational fluid dynamics
  • Aerodynamics
  • Airspeed
  • Wind power
  • Apartment types
  • Skyscrapers
  • Weather extremes of Earth
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software