AttributesValues
type
value
  • Decision trees play an important role both in Machine Learning and Knowledge Representation. They are attractive due to their immediate interpretability. In the spirit of Occam’s razor, and interpretability, it is desirable to calculate the smallest tree. This, however, has proven to be a challenging task and greedy approaches are typically used to learn trees in practice. Nevertheless, recent work showed that by the use of SAT solvers one may calculate the optimal size tree for real-world benchmarks. This paper proposes a novel SAT-based encoding that explicitly models paths in the tree, which enables us to control the tree’s depth as well as size. At the level of individual SAT calls, we investigate splitting the search space into tree topologies. Our tool outperforms the existing implementation. But also, the experimental results show that minimizing the depth first and then minimizing the number of nodes enables solving a larger set of instances.
subject
  • Philosophy of religion
  • Philosophical theories
  • Philosophy of culture
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software