About: The COVID-19 pandemic has precipitated a global crisis, with more than 690,000 confirmed cases and more than 33,000 confirmed deaths globally as of March 30, 2020 [1–4]. At present twOfficentral public health control strategies have emerged: mitigation and suppression (e.g, [5]). Both strategies focus on reducing new infections by reducing interactions (and both raise questions of sustainability and long-term tactics). Complementary to those approaches, here we develop and analyze an epidemiological intervention model that leverages serological tests [6, 7] to identify and deploy recovered individuals as focal points for sustaining safer interactions via interaction substitution, i.e., to develop what we term ‘shield immunity’ at the population scale. Recovered individuals, in the present context, represent those who have developed protective, antibodies to SARS-CoV-2 and are no longer shedding virus [8]. The objective of a shield immunity strategy is to help sustain the interactions necessary for the functioning of essential goods and services (including but not limited to tending to the elderly [9], hospital care, schools, and food supply) while decreasing the probability of transmission during such essential interactions. We show that a shield immunity approach may significantly reduce the length and reduce the overall burden of an outbreak, and can work synergistically with social distancing. The present model highlights the value of serological testing as part of intervention strategies, in addition to its well recognized roles in estimating prevalence [10, 11] and in the potential development of plasma-based therapies [12–15].   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The COVID-19 pandemic has precipitated a global crisis, with more than 690,000 confirmed cases and more than 33,000 confirmed deaths globally as of March 30, 2020 [1–4]. At present twOfficentral public health control strategies have emerged: mitigation and suppression (e.g, [5]). Both strategies focus on reducing new infections by reducing interactions (and both raise questions of sustainability and long-term tactics). Complementary to those approaches, here we develop and analyze an epidemiological intervention model that leverages serological tests [6, 7] to identify and deploy recovered individuals as focal points for sustaining safer interactions via interaction substitution, i.e., to develop what we term ‘shield immunity’ at the population scale. Recovered individuals, in the present context, represent those who have developed protective, antibodies to SARS-CoV-2 and are no longer shedding virus [8]. The objective of a shield immunity strategy is to help sustain the interactions necessary for the functioning of essential goods and services (including but not limited to tending to the elderly [9], hospital care, schools, and food supply) while decreasing the probability of transmission during such essential interactions. We show that a shield immunity approach may significantly reduce the length and reduce the overall burden of an outbreak, and can work synergistically with social distancing. The present model highlights the value of serological testing as part of intervention strategies, in addition to its well recognized roles in estimating prevalence [10, 11] and in the potential development of plasma-based therapies [12–15].
subject
  • Virology
  • Great Recession in the United Kingdom
  • 2007 in economics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software