About: In this article we want to show the potential of an evolutionary algorithm called Topological Weighted Centroid (TWC). This algorithm can obtain new and relevant information from extremely limited and poor datasets. In a world dominated by the concept of big (fat?) data we want to show that it is possible, by necessity or choice, to work profitably even on small data. This peculiarity of the algorithm means that even in the early stages of an epidemic process, when the data are too few to have sufficient statistics, it is possible to obtain important information. To prove our theory, we addressed one of the most central issues at the moment: the COVID-19 epidemic. In particular, the cases recorded in Italy have been selected. Italy seems to have a central role in this epidemic because of the high number of measured infections. Through this innovative artificial intelligence algorithm, we have tried to analyze the evolution of the phenomenon and to predict its future steps using a dataset that contained only geospatial coordinates (longitude and latitude) of the first recorded cases. Once the coordinates of the places where at least one case of contagion had been officially diagnosed until February 26(th), 2020 had been collected, research and analysis was carried out on: outbreak point and related heat map (TWC alpha); probability distribution of the contagion on February 26th (TWC beta); possible spread of the phenomenon in the immediate future and then in the future of the future (TWC gamma and TWC theta); how this passage occurred in terms of paths and mutual influence (Theta paths and Markov Machine). Finally, a heat map of the possible situation towards the end of the epidemic in terms of infectiousness of the areas was drawn up. The analyses with TWC confirm the assumptions made at the beginning.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • In this article we want to show the potential of an evolutionary algorithm called Topological Weighted Centroid (TWC). This algorithm can obtain new and relevant information from extremely limited and poor datasets. In a world dominated by the concept of big (fat?) data we want to show that it is possible, by necessity or choice, to work profitably even on small data. This peculiarity of the algorithm means that even in the early stages of an epidemic process, when the data are too few to have sufficient statistics, it is possible to obtain important information. To prove our theory, we addressed one of the most central issues at the moment: the COVID-19 epidemic. In particular, the cases recorded in Italy have been selected. Italy seems to have a central role in this epidemic because of the high number of measured infections. Through this innovative artificial intelligence algorithm, we have tried to analyze the evolution of the phenomenon and to predict its future steps using a dataset that contained only geospatial coordinates (longitude and latitude) of the first recorded cases. Once the coordinates of the places where at least one case of contagion had been officially diagnosed until February 26(th), 2020 had been collected, research and analysis was carried out on: outbreak point and related heat map (TWC alpha); probability distribution of the contagion on February 26th (TWC beta); possible spread of the phenomenon in the immediate future and then in the future of the future (TWC gamma and TWC theta); how this passage occurred in terms of paths and mutual influence (Theta paths and Markov Machine). Finally, a heat map of the possible situation towards the end of the epidemic in terms of infectiousness of the areas was drawn up. The analyses with TWC confirm the assumptions made at the beginning.
subject
  • Epidemics
  • Evolution
  • Algorithms
  • Biological hazards
  • Cybernetics
  • Optimization algorithms and methods
  • Statistical theory
  • Mathematical logic
  • Theoretical computer science
  • Evolutionary algorithms
  • Statistical principles
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software