AttributesValues
type
value
  • We have developed a globally applicable diagnostic Covid-19 model by augmenting the classical SIR epidemiological model with a neural network module. Our model does not rely upon previous epidemics like SARS/MERS and all parameters are optimized via machine learning algorithms employed on publicly available Covid-19 data. The model decomposes the contributions to the infection timeseries to analyze and compare the role of quarantine control policies employed in highly affected regions of Europe, North America, South America and Asia in controlling the spread of the virus. For all continents considered, our results show a generally strong correlation between strengthening of the quarantine controls as learnt by the model and actions taken by the regions' respective governments. Finally, we have hosted our quarantine diagnosis results for the top 70 affected countries worldwide, on a public platform, which can be used for informed decision making by public health officials and researchers alike.
subject
  • Virology
  • Europe
  • South America
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software