AttributesValues
type
value
  • The interpretation of the number of COVID-19 cases and deaths in a country or region is strongly dependent on the number of performed tests. We developed a novel SIR based epidemiological model (SIVRT) which allows the country-specific integration of testing information and other available data. The model thereby enables a dynamic inspection of the pandemic and allows estimating key figures, like the number of overall detected and undetected COVID-19 cases and the infection fatality rate. As proof of concept, the novel SIVRT model was used to simulate the first phase of the pandemic in Luxembourg. An overall number of infections of 13.000 and an infection fatality rate of 1,3% was estimated, which is in concordance with data from population-wide testing. Furthermore based on the data as of end of May 2020 and assuming a partial deconfinement, an increase of cases is predicted from mid of July 2020 on. This is consistent with the current observed rise and shows the predictive potential of the novel SIVRT model.
Subject
  • Epidemiology
  • Luxembourg
  • Benelux
  • COVID-19 pandemic in Asia
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software