About: Abstract The construction of a continuous family of distributions on a compact (bounded) set is demonstrated by concatenating, in a continuous manner, three probability density functions with bound- ed support using a modified mixture technique. The construction technique is similar to that of generalized trapezoidal (GT) distributions, but contrary to GT distributions, the resulting density function is smooth within its bounded domain. The construction of Generalized Trapezoidal Ogive (GTO) distributions was motivated by the COVID-19 epidemic, where smoothness of an infection rate curve may be a desirable property combined with the ability to separately model three stages and their durations as the epidemic progresses, being: (1) an increasing infection rate stage, (2) an infection rate stage of some stability and (3) a decreasing infection rate stage. The resulting model allows for asymmetry of the infection rate curve opposite to, for example, the Gaussian Error Infection (GEI) rate curve utilized early on for COVID-19 epidemic projections by The Institute for Health Metrics and Evaluation. While other asymmetric distributions too allow for the modeling of asymmetry, the ability to separately model the above three stages of an epidemic’s progression is a distinct feature of the model proposed. The latter avoids unrealistic projections of an epidemic’s right-tail in the absence of right tail data, which is an artifact of any fatality rate model where a left-tail fit determines its right-tail behavior.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract The construction of a continuous family of distributions on a compact (bounded) set is demonstrated by concatenating, in a continuous manner, three probability density functions with bound- ed support using a modified mixture technique. The construction technique is similar to that of generalized trapezoidal (GT) distributions, but contrary to GT distributions, the resulting density function is smooth within its bounded domain. The construction of Generalized Trapezoidal Ogive (GTO) distributions was motivated by the COVID-19 epidemic, where smoothness of an infection rate curve may be a desirable property combined with the ability to separately model three stages and their durations as the epidemic progresses, being: (1) an increasing infection rate stage, (2) an infection rate stage of some stability and (3) a decreasing infection rate stage. The resulting model allows for asymmetry of the infection rate curve opposite to, for example, the Gaussian Error Infection (GEI) rate curve utilized early on for COVID-19 epidemic projections by The Institute for Health Metrics and Evaluation. While other asymmetric distributions too allow for the modeling of asymmetry, the ability to separately model the above three stages of an epidemic’s progression is a distinct feature of the model proposed. The latter avoids unrealistic projections of an epidemic’s right-tail in the absence of right tail data, which is an artifact of any fatality rate model where a left-tail fit determines its right-tail behavior.
Subject
  • Names
  • Westminster system
  • Statutory law
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software