About: Abstract Commercial grain elevators are hazardous agro-manufacturing work environments where workers are prone to serious and life-threatening injuries. The aim of this study is to give insight into safety risks in grain handling facilities through information processing of workers’ compensation data on agro-manufacturing occupational incidents within commercial grain elevators in the Midwest region of the United States between 2008 and 2016. The severity of occupational incidents is determined by total dollar amount incurred on medical, indemnity, and other expenses in workers’ compensation claims. The most important factors that affect the cost escalation of occupational incidents are extracted using bootstrap partitioning method, and are applied as input for constructing two machine learning models: random forests decision trees, and naïve Bayes. Both models show high accuracy (87.64% and 92.78% respectively) in predicting that a future claim is classified as either low or medium, severity. The models contribute to identifying high injury risk groups, and prevalent incident causes, allowing a more research-based focused intervention effort in grain handling workplaces. In addition, the results are applicable in forecasting cost severity of future claims, and identifying factors that contribute to the escalation of claims costs.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Commercial grain elevators are hazardous agro-manufacturing work environments where workers are prone to serious and life-threatening injuries. The aim of this study is to give insight into safety risks in grain handling facilities through information processing of workers’ compensation data on agro-manufacturing occupational incidents within commercial grain elevators in the Midwest region of the United States between 2008 and 2016. The severity of occupational incidents is determined by total dollar amount incurred on medical, indemnity, and other expenses in workers’ compensation claims. The most important factors that affect the cost escalation of occupational incidents are extracted using bootstrap partitioning method, and are applied as input for constructing two machine learning models: random forests decision trees, and naïve Bayes. Both models show high accuracy (87.64% and 92.78% respectively) in predicting that a future claim is classified as either low or medium, severity. The models contribute to identifying high injury risk groups, and prevalent incident causes, allowing a more research-based focused intervention effort in grain handling workplaces. In addition, the results are applicable in forecasting cost severity of future claims, and identifying factors that contribute to the escalation of claims costs.
Subject
  • United States
  • Classification algorithms
  • Trade unions
  • Words coined in the 1880s
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software