About: In computational neuroscience, Neural Population Models (NPMs) are mechanistic models that describe brain physiology in a range of different states. Within computational neuroscience there is growing interest in the inverse problem of inferring NPM parameters from recordings such as the EEG (Electroencephalogram). Uncertainty quantification is essential in this application area in order to infer the mechanistic effect of interventions such as anaesthesia. This paper presents [Image: see text] software for Bayesian uncertainty quantification in the parameters of NPMs from approximately stationary data using Markov Chain Monte Carlo (MCMC). Modern MCMC methods require first order (and in some cases higher order) derivatives of the posterior density. The software presented offers two distinct methods of evaluating derivatives: finite differences and exact derivatives obtained through Algorithmic Differentiation (AD). For AD, two different implementations are used: the open source Stan Math Library and the commercially licenced [Image: see text] tool distributed by NAG (Numerical Algorithms Group). The use of derivative information in MCMC sampling is demonstrated through a simple example, the noise-driven harmonic oscillator. And different methods for computing derivatives are compared. The software is written in a modular object-oriented way such that it can be extended to derivative based MCMC for other scientific domains.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • In computational neuroscience, Neural Population Models (NPMs) are mechanistic models that describe brain physiology in a range of different states. Within computational neuroscience there is growing interest in the inverse problem of inferring NPM parameters from recordings such as the EEG (Electroencephalogram). Uncertainty quantification is essential in this application area in order to infer the mechanistic effect of interventions such as anaesthesia. This paper presents [Image: see text] software for Bayesian uncertainty quantification in the parameters of NPMs from approximately stationary data using Markov Chain Monte Carlo (MCMC). Modern MCMC methods require first order (and in some cases higher order) derivatives of the posterior density. The software presented offers two distinct methods of evaluating derivatives: finite differences and exact derivatives obtained through Algorithmic Differentiation (AD). For AD, two different implementations are used: the open source Stan Math Library and the commercially licenced [Image: see text] tool distributed by NAG (Numerical Algorithms Group). The use of derivative information in MCMC sampling is demonstrated through a simple example, the noise-driven harmonic oscillator. And different methods for computing derivatives are compared. The software is written in a modular object-oriented way such that it can be extended to derivative based MCMC for other scientific domains.
Subject
  • Thermodynamics
  • Animal anatomy
  • Neural coding
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software