AttributesValues
type
value
  • In the industrial world, the Internet of Things produces an enormous amount of data that we can use as a source for machine learning algorithms to optimize the production process. One area of application of this kind of advanced analytics is Predictive Maintenance, which involves early detection of faults based on existing metering. In this paper, we present the concept of a portable solution for a real-time condition monitoring system allowing for early detection of failures based on sensor data retrieved from SCADA systems. Although the data processed in systems, such as SCADA, are not initially intended for purposes other than controlling the production process, new technologies on the edge of big data and IoT remove these limitations and provide new possibilities of using advanced analytics. This paper shows how regression-based techniques can be adapted to fault detection based on actual process data from the oxygenating compressors in the flue gas desulphurization installation in a coal-fired power plant.
Subject
  • Distributed computing problems
  • Safety engineering
  • Technology forecasting
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software