AttributesValues
type
value
  • In this work, we develop an adaptive, near-optimal, 3-Dimensional (3D) to 1D ordering methodology for brain magnetic resonance imaging (MRI) data, using a space-filling curve (SFC) trajectory, which is adaptive to brain’s shape as captured by MRI. We present the pseudocode of the heuristics for developing the SFC trajectory. We apply this trajectory to functional MRI brain activation maps from a schizophrenia study, compress the data, obtain features, and perform classification of schizophrenia patients vs. normal controls. We compare the classification results with those of a linear ordering trajectory, which has been the traditional method for ordering 3D MRI data to 1D. We report that the adaptive SFC trajectory-based classification performance is superior than the linear ordering trajectory-based classification.
Subject
  • Magnetic resonance imaging
  • 1973 introductions
  • American inventions
  • Cryogenics
  • Discovery and invention controversies
  • Multi-dimensional geometry
  • Video compression
  • Continuous mappings
  • Fractal curves
  • Iterated function system fractals
  • 20th-century inventions
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software