About: Coronavirus disease 2019 is a current pandemic health threat especially for elderly patients with comorbidities. This respiratory disease is caused by a beta coronavirus known as severe acute respiratory syndrome coronavirus 2. The disease can progress into acute respiratory distress syndrome that can be fatal. Currently, no specific drug or vaccine are available to combat this pandemic outbreak. Social distancing and lockdown have been enforced in many places worldwide. The spike protein of coronavirus 2 is essential for viral entry into host target cells via interaction with angiotensin converting enzyme 2. This viral protein is considered a potential target for design and development of a drug or vaccine. Previously, we have reported several potential epitopes on coronavirus 2 spike protein with high antigenicity, low allergenicity and good stability against specified proteases. In the current study, we have constructed and evaluated a peptide vaccine from these potential epitopes by using in silico approach. This construct is predicted to have a protective immunogenicity, low allergenicity and good stability with minor structural flaws in model build. The population coverage of the used T-cells epitopes is believed to be high according to the employed restricted alleles. The vaccine construct can elicit efficient and long-lasting immune response as appeared through simulation analysis. This multiepitope-based peptide vaccine may represent a potential candidate against coronavirus 2. However, further in vitro and in vivo verification are required.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Coronavirus disease 2019 is a current pandemic health threat especially for elderly patients with comorbidities. This respiratory disease is caused by a beta coronavirus known as severe acute respiratory syndrome coronavirus 2. The disease can progress into acute respiratory distress syndrome that can be fatal. Currently, no specific drug or vaccine are available to combat this pandemic outbreak. Social distancing and lockdown have been enforced in many places worldwide. The spike protein of coronavirus 2 is essential for viral entry into host target cells via interaction with angiotensin converting enzyme 2. This viral protein is considered a potential target for design and development of a drug or vaccine. Previously, we have reported several potential epitopes on coronavirus 2 spike protein with high antigenicity, low allergenicity and good stability against specified proteases. In the current study, we have constructed and evaluated a peptide vaccine from these potential epitopes by using in silico approach. This construct is predicted to have a protective immunogenicity, low allergenicity and good stability with minor structural flaws in model build. The population coverage of the used T-cells epitopes is believed to be high according to the employed restricted alleles. The vaccine construct can elicit efficient and long-lasting immune response as appeared through simulation analysis. This multiepitope-based peptide vaccine may represent a potential candidate against coronavirus 2. However, further in vitro and in vivo verification are required.
subject
  • Virology
  • Immunology
  • Zoonoses
  • COVID-19
  • Criminology
  • Virus genera
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software