AttributesValues
type
value
  • High throughput sequencing of RNA (RNA-Seq) can provide us with millions of short fragments of RNA transcripts from a sample. How to better recover the original RNA transcripts from those fragments (RNA-Seq assembly) is still a difficult task. For example, RNA-Seq assembly tools typically require hyper-parameter tuning to achieve good performance for particular datasets. This kind of tuning is usually unintuitive and time-consuming. Consequently, users often resort to default parameters, which do not guarantee consistent good performance for various datasets. Results: Here we propose BOAssembler, a framework that enables end-to-end automatic tuning of RNA-Seq assemblers, based on Bayesian Optimization principles. Experiments show this data-driven approach is effective to improve the overall assembly performance. The approach would be helpful for downstream (e.g. gene, protein, cell) analysis, and more broadly, for future bioinformatics benchmark studies. Availability: https://github.com/shunfumao/boassembler.
Subject
  • RNA
  • Gene expression
  • RNA sequencing
  • 1970 in science
  • Molecular biology
  • Computational mathematics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software