Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Bio-informed Protein Sequence Generation for Multi-class Virus Mutation Prediction
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
wasabi.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Bio-informed Protein Sequence Generation for Multi-class Virus Mutation Prediction
Creator
Wang, Yuyang
Magar, Rishikesh
Yadav, Prakarsh
Farimani, Amir
source
BioRxiv
abstract
Viral pandemics are emerging as a serious global threat to public health, like the recent outbreak of COVID-19. Viruses, especially those belonging to a large family of +ssRNA viruses, have a high possibility of mutating by inserting, deleting, or substituting one or multiple genome segments. It is of great importance for human health worldwide to predict the possible virus mutations, which can effectively avoid the potential second outbreak. In this work, we develop a GAN-based multi-class protein sequence generative model, named ProteinSeqGAN. Given the viral species, the generator is modeled on RNNs to predict the corresponding antigen epitope sequences synthesized by viral genomes. Additionally, a Graphical Protein Autoencoder (GProAE) built upon VAE is proposed to featurize proteins bioinformatically. GProAE, as a multi-class discriminator, also learns to evaluate the goodness of protein sequences and predict the corresponding viral species. Further experiments show that our ProteinSeqGAN model can generate valid antigen protein sequences from both bioinformatics and statistics perspectives, which can be promising predictions of virus mutations.
has issue date
2020-06-12
(
xsd:dateTime
)
bibo:doi
10.1101/2020.06.11.146167
has license
biorxiv
sha1sum (hex)
889fab29fe2eee93228db1ae56698edfa5310a42
schema:url
https://doi.org/10.1101/2020.06.11.146167
resource representing a document's title
Bio-informed Protein Sequence Generation for Multi-class Virus Mutation Prediction
schema:publication
bioRxiv
resource representing a document's body
covid:889fab29fe2eee93228db1ae56698edfa5310a42#body_text
is
schema:about
of
named entity 'substituting'
named entity 'perspectives'
named entity 'COVID-19'
named entity 'GLOBAL'
named entity 'OUR'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 6
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software