About: Traditionally, iodine has been delivered as a solution, tablet or resin to disinfect water. In this study we evaluated the “I(2) vapor infusion” (I(2)VP) technology which passes an airstream through a matrix containing elemental iodine (I(2)) to produce I(2) vapor as an innovative method of iodine delivery for water disinfection. Pressured air was provided either by a compressor or hand pump. Testing was performed with water inoculated with either Gram-negative (Escherichia, Salmonella) or Gram-positive (Enterococcus) bacteria or with pre-formed Acinetobacter or Staphylococcus biofilms. Bacterial colony forming units were used to assess efficacy of the device. In distilled water all bacteria and biofilms were eliminated after brief exposures (<90 s). Culturable bacteria were also eliminated from pond and municipal sewer water, but the technology was mostly ineffective against dairy lagoon water with high turbidity and organic particulate. Longer duration infusion and higher air volumes used to overcome interference from organic matter were also associated with higher concentrations of residual iodine. We conclude that I(2) vapor infusion has the potential to be useful for emergency water treatment and potentially for reducing microbiological contamination of some waste streams.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Traditionally, iodine has been delivered as a solution, tablet or resin to disinfect water. In this study we evaluated the “I(2) vapor infusion” (I(2)VP) technology which passes an airstream through a matrix containing elemental iodine (I(2)) to produce I(2) vapor as an innovative method of iodine delivery for water disinfection. Pressured air was provided either by a compressor or hand pump. Testing was performed with water inoculated with either Gram-negative (Escherichia, Salmonella) or Gram-positive (Enterococcus) bacteria or with pre-formed Acinetobacter or Staphylococcus biofilms. Bacterial colony forming units were used to assess efficacy of the device. In distilled water all bacteria and biofilms were eliminated after brief exposures (<90 s). Culturable bacteria were also eliminated from pond and municipal sewer water, but the technology was mostly ineffective against dairy lagoon water with high turbidity and organic particulate. Longer duration infusion and higher air volumes used to overcome interference from organic matter were also associated with higher concentrations of residual iodine. We conclude that I(2) vapor infusion has the potential to be useful for emergency water treatment and potentially for reducing microbiological contamination of some waste streams.
subject
  • Membrane biology
  • Water treatment
  • Pumps
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software