About: This chapter starts by providing a historical background of our research endeavors over the past half-century to develop various isotope-aided methods in biological NMR spectroscopy, since innovations bloom only on the rich ground cultivated by previous investigators. We then focused on the stereo-array isotope-labeling (SAIL) method, one of our recent accomplishments, which culminates the isotope-aided NMR technologies for structural studies of proteins from various aspects: accurate structural determinations of large proteins, elaboration for automated structural determination, highly efficient and versatile residue-selective methyl labeling with newly developed auxotrophic E. coli strains, large-amplitude slow-breathing motion (LASBM) as revealed by the aromatic ring flipping of the residues in ligand-binding interfaces, and applications of the deuterium-induced (13)C-NMR isotope shift to investigate the hydrogen exchange phenomena of side-chain polar groups. Meanwhile, the expected role of NMR spectroscopy has been rapidly shifting from structure determinations to dynamics studies of biologically interesting targets, such as membrane proteins and larger protein complexes. The dynamic aspects of protein–protein and protein–ligand interactions are closely related to their biological functions and can be efficiently studied by using proteins residue selectively labeled with amino acids bearing optimized labeling patterns, prepared by cellular expression. We are absolutely confident that biological NMR spectroscopy will continually develop with further innovations of isotope-labeling technologies in the coming era, featuring ultrahigh field spectrometers beyond 1 GHz.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • This chapter starts by providing a historical background of our research endeavors over the past half-century to develop various isotope-aided methods in biological NMR spectroscopy, since innovations bloom only on the rich ground cultivated by previous investigators. We then focused on the stereo-array isotope-labeling (SAIL) method, one of our recent accomplishments, which culminates the isotope-aided NMR technologies for structural studies of proteins from various aspects: accurate structural determinations of large proteins, elaboration for automated structural determination, highly efficient and versatile residue-selective methyl labeling with newly developed auxotrophic E. coli strains, large-amplitude slow-breathing motion (LASBM) as revealed by the aromatic ring flipping of the residues in ligand-binding interfaces, and applications of the deuterium-induced (13)C-NMR isotope shift to investigate the hydrogen exchange phenomena of side-chain polar groups. Meanwhile, the expected role of NMR spectroscopy has been rapidly shifting from structure determinations to dynamics studies of biologically interesting targets, such as membrane proteins and larger protein complexes. The dynamic aspects of protein–protein and protein–ligand interactions are closely related to their biological functions and can be efficiently studied by using proteins residue selectively labeled with amino acids bearing optimized labeling patterns, prepared by cellular expression. We are absolutely confident that biological NMR spectroscopy will continually develop with further innovations of isotope-labeling technologies in the coming era, featuring ultrahigh field spectrometers beyond 1 GHz.
subject
  • Spectroscopy
  • Alkyl groups
  • Bacteria described in 1919
  • Nuclear physics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software