About: Abstract Murine carcinoembryonic antigens serve as receptors for the binding and entry of the enveloped coronavirus mouse hepatitis virus (MHV) into cells. Numerous receptor isoforms are now known, and each has extensive differences in its amino terminal immunoglobulin-like domain (NTD) to which MHV binds via its protruding spike proteins. Some of these receptor alterations may affect the ability to bind viral spikes. To identify individual residues controlling virus binding differences, we have used plasmid and vaccinia virus vectors to express two forms of MHV receptor differing only in their NTD. The two receptors, designated biliary glycoproteins (Bgp) 1aand 1b NTD, varied by 29 residues in the 107 amino acid NTD. When expressed from cDNAs in receptor-negative HeLa cells, these two Bgp molecules were displayed on cell surfaces to equivalent levels, as both were equally modified by a membrane-impermeant biotinylation reagent. Infectious center assays revealed that the 1aisoform was 10 to 100 times more effective than 1b NTDin its ability to confer sensitivity to MHV (strain A59) infection. Bgp1awas also more effective than Bgp1b NTDin comparative virus adsorption assays, binding 6 times more MHV (strain A59) and 2.5 times more MHV (strain JHMX). Bgp1awas similarly more effective in promoting the capacity of viral spikes to mediate intercellular membrane fusion as judged by quantitation of syncytia following cocultivation of spike and receptor-bearing cells. To identify residues influencing these differences, we inserted varying numbers of 1bresidues into the Bgp1abackground via restriction fragment exchange and site-directed mutagenesis. Analysis of the resulting chimeric receptors showed that residues 38 to 43 of the NTD were key determinants of the binding and fusion differences between the two receptors. These residues map to an exposed loop (C-C′ loop) in a structural model of the closely related human carcinoembryonic antigen.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Murine carcinoembryonic antigens serve as receptors for the binding and entry of the enveloped coronavirus mouse hepatitis virus (MHV) into cells. Numerous receptor isoforms are now known, and each has extensive differences in its amino terminal immunoglobulin-like domain (NTD) to which MHV binds via its protruding spike proteins. Some of these receptor alterations may affect the ability to bind viral spikes. To identify individual residues controlling virus binding differences, we have used plasmid and vaccinia virus vectors to express two forms of MHV receptor differing only in their NTD. The two receptors, designated biliary glycoproteins (Bgp) 1aand 1b NTD, varied by 29 residues in the 107 amino acid NTD. When expressed from cDNAs in receptor-negative HeLa cells, these two Bgp molecules were displayed on cell surfaces to equivalent levels, as both were equally modified by a membrane-impermeant biotinylation reagent. Infectious center assays revealed that the 1aisoform was 10 to 100 times more effective than 1b NTDin its ability to confer sensitivity to MHV (strain A59) infection. Bgp1awas also more effective than Bgp1b NTDin comparative virus adsorption assays, binding 6 times more MHV (strain A59) and 2.5 times more MHV (strain JHMX). Bgp1awas similarly more effective in promoting the capacity of viral spikes to mediate intercellular membrane fusion as judged by quantitation of syncytia following cocultivation of spike and receptor-bearing cells. To identify residues influencing these differences, we inserted varying numbers of 1bresidues into the Bgp1abackground via restriction fragment exchange and site-directed mutagenesis. Analysis of the resulting chimeric receptors showed that residues 38 to 43 of the NTD were key determinants of the binding and fusion differences between the two receptors. These residues map to an exposed loop (C-C′ loop) in a structural model of the closely related human carcinoembryonic antigen.
subject
  • Virology
  • Animal virology
  • Gas technologies
  • Membrane biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software