About: Pulmonary hypertension and concomitant right ventricular failure present a diagnostic and therapeutic challenge in the intensive care unit and have been associated with a high mortality. Significant co-morbidities and hemodynamic instability are often present, and routine critical care unit resuscitation may worsen hemodynamics and limit the chances of survival in patients with an already underlying poor prognosis. Right ventricular failure results from structural or functional processes that limit the right ventricle’s ability to maintain adequate cardiac output. It is commonly seen as the result of left heart failure, acute pulmonary embolism, progression or decompensation of pulmonary hypertension, sepsis, acute lung injury, or in the perioperative setting. Prompt recognition of the underlying cause and institution of treatment with a thorough understanding of the elements necessary to optimize preload, cardiac contractility, enhance systemic arterial perfusion, and reduce right ventricular afterload are of paramount importance. Moreover, the emergence of previously uncommon entities in patients with pulmonary hypertension (pregnancy, sepsis, liver disease, etc.) and the availability of modern devices to provide support pose additional challenges that must be addressed with an in-depth knowledge of this disease.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Pulmonary hypertension and concomitant right ventricular failure present a diagnostic and therapeutic challenge in the intensive care unit and have been associated with a high mortality. Significant co-morbidities and hemodynamic instability are often present, and routine critical care unit resuscitation may worsen hemodynamics and limit the chances of survival in patients with an already underlying poor prognosis. Right ventricular failure results from structural or functional processes that limit the right ventricle’s ability to maintain adequate cardiac output. It is commonly seen as the result of left heart failure, acute pulmonary embolism, progression or decompensation of pulmonary hypertension, sepsis, acute lung injury, or in the perioperative setting. Prompt recognition of the underlying cause and institution of treatment with a thorough understanding of the elements necessary to optimize preload, cardiac contractility, enhance systemic arterial perfusion, and reduce right ventricular afterload are of paramount importance. Moreover, the emergence of previously uncommon entities in patients with pulmonary hypertension (pregnancy, sepsis, liver disease, etc.) and the availability of modern devices to provide support pose additional challenges that must be addressed with an in-depth knowledge of this disease.
Subject
  • Intensive care medicine
  • Computational fluid dynamics
  • Cardiovascular physiology
  • Organ failure
  • RTT
  • RTTEM
  • Pulmonary heart disease and diseases of pulmonary circulation
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software