About: Angiotensin (Ang) converting enzyme (ACE) 2 cleaves Ang-II into the vasodilator peptide Ang-(1-7), thus acting as a pivotal element in balancing the local effects of these peptides. ACE2 has been identified in various tissues and is supposed to be a modulator of cardiovascular function. Decreases in ACE2 expression and activity have been reported in models of hypertension, heart failure, atherosclerosis, diabetic nephropathy and others. In addition, the expression level and/or activity are affected by other renin-angiotensin system components (e.g. ACE and AT1 receptors). Local inhibition or global deletion of brain ACE2 induces a reduction in baroreflex sensitivity. Moreover, ACE2-null mice have been shown to exhibit either blood pressure (BP) or cardiac dysfunction phenotypes. On the other hand, over-expression of ACE2 exerts protective effects in local tissues, including the brain. In this review, we will first summarize the major findings linking ACE2 to cardiovascular function in the periphery then focus on recent discoveries related to ACE2 in the central nervous system. Finally, we will unveil new tools designed to address the importance of central ACE2 in various diseases, and discuss the potential for this carboxypeptidase as a new target in the treatment of hypertension and other cardiovascular diseases.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Angiotensin (Ang) converting enzyme (ACE) 2 cleaves Ang-II into the vasodilator peptide Ang-(1-7), thus acting as a pivotal element in balancing the local effects of these peptides. ACE2 has been identified in various tissues and is supposed to be a modulator of cardiovascular function. Decreases in ACE2 expression and activity have been reported in models of hypertension, heart failure, atherosclerosis, diabetic nephropathy and others. In addition, the expression level and/or activity are affected by other renin-angiotensin system components (e.g. ACE and AT1 receptors). Local inhibition or global deletion of brain ACE2 induces a reduction in baroreflex sensitivity. Moreover, ACE2-null mice have been shown to exhibit either blood pressure (BP) or cardiac dysfunction phenotypes. On the other hand, over-expression of ACE2 exerts protective effects in local tissues, including the brain. In this review, we will first summarize the major findings linking ACE2 to cardiovascular function in the periphery then focus on recent discoveries related to ACE2 in the central nervous system. Finally, we will unveil new tools designed to address the importance of central ACE2 in various diseases, and discuss the potential for this carboxypeptidase as a new target in the treatment of hypertension and other cardiovascular diseases.
subject
  • Cardiovascular physiology
  • EC 3.4.17
  • Organ failure
  • Single-pass transmembrane proteins
  • Mexican cuisine
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software