AttributesValues
type
value
  • Unlike traditional cancer therapies, such as surgery, radiation and chemotherapy that are typically non-specific, cancer immunotherapy harnesses the high specificity of a patient’s own immune system to selectively kill cancer cells. The immune system is the body’s main cancer surveillance system, but cancers may evade destruction thanks to various immune-suppressing mechanisms. We therefore need to deploy various immunotherapy-based strategies to help bolster the anti-tumour immune responses. These include engineering T cells to express chimeric antigen receptors (CARs) to specifically recognise tumour neoantigens, inactivating immune checkpoints, oncolytic viruses and dendritic cell (DC) vaccines, which have all shown clinical benefit in certain cancers. However, treatment efficacy remains poor due to drug-induced adverse events and immunosuppressive tendencies of the tumour microenvironment. Recent preclinical studies have unveiled novel therapies such as anti-cathepsin antibodies, galectin-1 blockade and anti-OX40 agonistic antibodies, which may be utilised as adjuvant therapies to modulate the tumour microenvironment and permit more ferocious anti-tumour immune response.
subject
  • Virology
  • Immunology
  • Leukemia
  • Oncology
  • Immune system
  • Clinical research
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software