About: Differential privacy algorithm is an effective technology to protect data privacy, and there are many pieces of research about differential privacy and some practical applications from the Internet companies, such as Apple and Google, etc. By differential privacy technology, the data organizations can allow external data scientists to explore their sensitive datasets, and the data owners can be ensured provable privacy guarantees meanwhile. It is inevitable that the query results that will cause the error, as a consequence that the differential privacy algorithm would disturb the data, and some differential privacy algorithms are aimed to reduce the introduced noise. However, those algorithms just adopt to the simple or relative uniform data, when the data distribution is complex, some algorithms will lose efficiency. In this paper, we propose a new simple [Formula: see text]-differential privacy algorithm. Our approach includes two key points: Firstly, we used Laplace-based noise to disturb answer to reduce the error of the linear computation queries under intensive data items by workload-aware noise; Secondly, we propose an optimized workload division method. We divide the queries recursively to reduce the added noise, which can reduce computation error when there exists query hot spot in the workload. We conduct extensive evaluation over six real-world datasets to examine the performance of our approach. The experimental results show that our approach can reduce nearly 40% computation error for linear computation when compared with MWEM, DAWA, and Identity. Meanwhile, our approach can achieve better response time to answer the query cases compared with the start-of-the-art algorithms.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Differential privacy algorithm is an effective technology to protect data privacy, and there are many pieces of research about differential privacy and some practical applications from the Internet companies, such as Apple and Google, etc. By differential privacy technology, the data organizations can allow external data scientists to explore their sensitive datasets, and the data owners can be ensured provable privacy guarantees meanwhile. It is inevitable that the query results that will cause the error, as a consequence that the differential privacy algorithm would disturb the data, and some differential privacy algorithms are aimed to reduce the introduced noise. However, those algorithms just adopt to the simple or relative uniform data, when the data distribution is complex, some algorithms will lose efficiency. In this paper, we propose a new simple [Formula: see text]-differential privacy algorithm. Our approach includes two key points: Firstly, we used Laplace-based noise to disturb answer to reduce the error of the linear computation queries under intensive data items by workload-aware noise; Secondly, we propose an optimized workload division method. We divide the queries recursively to reduce the added noise, which can reduce computation error when there exists query hot spot in the workload. We conduct extensive evaluation over six real-world datasets to examine the performance of our approach. The experimental results show that our approach can reduce nearly 40% computation error for linear computation when compared with MWEM, DAWA, and Identity. Meanwhile, our approach can achieve better response time to answer the query cases compared with the start-of-the-art algorithms.
subject
  • Applied disciplines
  • Technology companies based in the San Francisco Bay Area
  • Multinational companies headquartered in the United States
  • Information privacy
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software