About: Using Supervised Machine Learning and Empirical Bayesian Kriging to reveal Correlates and Patterns of COVID-19 Disease outbreak in sub-Saharan Africa: Exploratory Data Analysis   Goto Sponge  NotDistinct  Permalink

An Entity of Type : schema:ScholarlyArticle, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
isDefinedBy
title
  • Using Supervised Machine Learning and Empirical Bayesian Kriging to reveal Correlates and Patterns of COVID-19 Disease outbreak in sub-Saharan Africa: Exploratory Data Analysis
Creator
  • Onovo, Amobi
  • Atobatele, Akinyemi
  • Gado, Pamela
  • James, Ezekiel
  • Kalaiwo, Abiye
  • Magaji, Doreen
  • Obanubi, Christopher
  • Odezugo, Gertrude
  • Ogundehin, Dolapo
  • Russell, Michele
source
  • MedRxiv
abstract
has issue date
bibo:doi
  • 10.1101/2020.04.27.20082057
has license
  • medrxiv
sha1sum (hex)
  • 927f883369146cb8623339224a73b39ffc9b82ef
schema:url
resource representing a document's title
resource representing a document's body
is schema:about of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software