AttributesValues
type
value
  • Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy is a label-free, non-destructive technique that can be applied to a vast range of biological applications, from imaging cancer tissues and live cells, to determining protein content and secondary structure composition. This review summarises the recent advances in applications of ATR-FTIR spectroscopy to biopharmaceuticals, the application of this technique to biosimilars, and the current uses of FTIR spectroscopy in biopharmaceutical production. We discuss the use of ATR-FTIR spectroscopic imaging to investigate biopharmaceuticals, and finally, give an outlook on the possible future developments and applications of ATR-FTIR spectroscopy and spectroscopic imaging to this field. Throughout the review comparisons will be made between FTIR spectroscopy and alternative analytical techniques, and areas will be identified where FTIR spectroscopy could perhaps offer a better alternative in future studies. This review focuses on the most recent advances in the field of using ATR-FTIR spectroscopy and spectroscopic imaging to characterise and evaluate biopharmaceuticals, both in an industrial and an academic research based environment.
subject
  • Infrared spectroscopy
  • Spectroscopy
  • Scientific techniques
  • Observational astronomy
  • Optical phenomena
  • Scattering, absorption and radiative transfer (optics)
  • Gustav Kirchhoff
  • Lighthouses
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software