AttributesValues
type
value
  • Reachability analysis is a critical tool for the formal verification of dynamical systems and the synthesis of controllers for them. Due to their computational complexity, many reachability analysis methods are restricted to systems with relatively small dimensions. One significant reason for such limitation is that those approaches, and their implementations, are not designed to leverage parallelism. They use algorithms that are designed to run serially within one compute unit and they can not utilize widely-available high-performance computing (HPC) platforms such as many-core CPUs, GPUs and Cloud-computing services. This paper presents PIRK, a tool to efficiently compute reachable sets for general nonlinear systems of extremely high dimensions. PIRK can utilize HPC platforms for computing reachable sets for general high-dimensional non-linear systems. PIRK has been tested on several systems, with state dimensions up to 4 billion. The scalability of PIRK’s parallel implementations is found to be highly favorable.
Subject
  • Parallel computing
  • Software quality
  • Concurrent computing
  • OpenCL compute devices
  • Communications protocols
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software