About: Abstract Background Apolipoprotein D (ApoD) is a member of the lipocalin family known to transport small hydrophobic ligands. A major site of ApoD expression in mice is the central nervous system where evidence suggests that it plays a protective role. Gene expression of ApoD was reported in bone-forming osteoblasts but its impact on bone metabolism remains undocumented. Methods We compared basic bone parameters of ApoD −/− (null) and transgenic (tg) mice to wild-type (wt) littermates through microCT and histochemistry, as well as ApoD expression and secretion in osteoblasts under various culture conditions through real-time PCR and immunoblotting. Results ApoD-null females displayed progressive bone loss with aging, resulting in a 50% reduction in trabecular bone volume and a 23% reduction in cortical bone volume by 9months of age. Only cortical bone volume was significantly reduced in ApoD-null males by an average of 24%. Histochemistry indicated significantly higher osteoblast surface and number of osteoclasts in femora from ApoD-null females. ApoD gene expression was confirmed in primary cultures of bone marrow mesenchymal cells (MSC), with higher expression levels in MSC from females compared to males. ApoD-null MSC exhibited impaired proliferation and differentiation potentials. Moreover, exogenous ApoD partially rescued the osteogenic potential of null MSC, which were shown to readily uptake the protein from media. ApoD expression was upregulated under low proliferation conditions, by contact inhibition and osteoblastic differentiation in MC3T3-E1 osteoblast-like cells. Conclusion Our results indicate that ApoD influences bone metabolism in mice in a gender-specific manner, potentially through an auto-/paracrine pathway.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Background Apolipoprotein D (ApoD) is a member of the lipocalin family known to transport small hydrophobic ligands. A major site of ApoD expression in mice is the central nervous system where evidence suggests that it plays a protective role. Gene expression of ApoD was reported in bone-forming osteoblasts but its impact on bone metabolism remains undocumented. Methods We compared basic bone parameters of ApoD −/− (null) and transgenic (tg) mice to wild-type (wt) littermates through microCT and histochemistry, as well as ApoD expression and secretion in osteoblasts under various culture conditions through real-time PCR and immunoblotting. Results ApoD-null females displayed progressive bone loss with aging, resulting in a 50% reduction in trabecular bone volume and a 23% reduction in cortical bone volume by 9months of age. Only cortical bone volume was significantly reduced in ApoD-null males by an average of 24%. Histochemistry indicated significantly higher osteoblast surface and number of osteoclasts in femora from ApoD-null females. ApoD gene expression was confirmed in primary cultures of bone marrow mesenchymal cells (MSC), with higher expression levels in MSC from females compared to males. ApoD-null MSC exhibited impaired proliferation and differentiation potentials. Moreover, exogenous ApoD partially rescued the osteogenic potential of null MSC, which were shown to readily uptake the protein from media. ApoD expression was upregulated under low proliferation conditions, by contact inhibition and osteoblastic differentiation in MC3T3-E1 osteoblast-like cells. Conclusion Our results indicate that ApoD influences bone metabolism in mice in a gender-specific manner, potentially through an auto-/paracrine pathway.
subject
  • Proteins
  • Central nervous system
  • Animals bred for albinism on a large scale
  • Skeletal system
  • Astronomy education works
  • Internet properties established in 1995
  • NASA online
  • American science websites
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software