AttributesValues
type
value
  • In software-defined networks (SDN), a controller program is in charge of deploying diverse network functionality across a large number of switches, but this comes at a great risk: deploying buggy controller code could result in network and service disruption and security loopholes. The automatic detection of bugs or, even better, verification of their absence is thus most desirable, yet the size of the network and the complexity of the controller makes this a challenging undertaking. In this paper, we propose MOCS, a highly expressive, optimised SDN model that allows capturing subtle real-world bugs, in a reasonable amount of time. This is achieved by (1) analysing the model for possible partial order reductions, (2) statically pre-computing packet equivalence classes and (3) indexing packets and rules that exist in the model. We demonstrate its superiority compared to the state of the art in terms of expressivity, by providing examples of realistic bugs that a prototype implementation of MOCS in Uppaal caught, and performance/scalability, by running examples on various sizes of network topologies, highlighting the importance of our abstractions and optimisations.
Subject
  • Emerging technologies
  • Network topology
  • Decentralization
  • Patent law
  • Product liability
  • Technical terminology
  • Network architecture
  • Configuration management
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software