About: Abstract Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining problem, which was recently proposed by Liu et al. Instead of setting a single minimum support threshold for all items, they allow users to specify multiple minimum supports to reflect the natures of the items, and an Apriori-based algorithm, named MSapriori, is developed to mine all frequent itemsets. In this paper, we study the same problem but with two additional improvements. First, we propose a FP-tree-like structure, MIS-tree, to store the crucial information about frequent patterns. Accordingly, an efficient MIS-tree-based algorithm, called the CFP-growth algorithm, is developed for mining all frequent itemsets. Second, since each item can have its own minimum support, it is very difficult for users to set the appropriate thresholds for all items at a time. In practice, users need to tune items' supports and run the mining algorithm repeatedly until a satisfactory end is reached. To speed up this time-consuming tuning process, an efficient algorithm which can maintain the MIS-tree structure without rescanning database is proposed. Experiments on both synthetic and real-life datasets show that our algorithms are much more efficient and scalable than the previous algorithm.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining problem, which was recently proposed by Liu et al. Instead of setting a single minimum support threshold for all items, they allow users to specify multiple minimum supports to reflect the natures of the items, and an Apriori-based algorithm, named MSapriori, is developed to mine all frequent itemsets. In this paper, we study the same problem but with two additional improvements. First, we propose a FP-tree-like structure, MIS-tree, to store the crucial information about frequent patterns. Accordingly, an efficient MIS-tree-based algorithm, called the CFP-growth algorithm, is developed for mining all frequent itemsets. Second, since each item can have its own minimum support, it is very difficult for users to set the appropriate thresholds for all items at a time. In practice, users need to tune items' supports and run the mining algorithm repeatedly until a satisfactory end is reached. To speed up this time-consuming tuning process, an efficient algorithm which can maintain the MIS-tree structure without rescanning database is proposed. Experiments on both synthetic and real-life datasets show that our algorithms are much more efficient and scalable than the previous algorithm.
subject
  • Algorithms
  • Data mining
  • Asteroid groups and families
  • Asteroids
  • Knowledge representation
  • Trees (data structures)
  • Mathematical logic
  • Theoretical computer science
  • Data types
  • Software quality
  • Abstract data types
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software