About: The scope of this work is to serve as a guiding tool against subjective estimations on real pandemic situations (mainly due to the inability to acquire objective real data over whole populations). The previously introduced model of closed self-organized criticality (SOC), is adapted in the case of a virus-induced epidemic. In this version this physical model can distinguish the virus spread according to the virus aggressiveness. The study presented, highlights the critical value of virus density over a population. For low values of the initial virus density (lower than the critical value) it is proved that the virus-diffusion behavior is safe and quantitatively similar to usual real epidemical data. However, it is revealed that very close to the critical point, the critical slowing-down (CSD) phenomenon, introduced by the theory of critical phenomena, emerges, leading to a tremendous increase of both the percentage of active carriers and the duration of the epidemic. A behavior of the epidemic obeying to a second order phase transition, also occurs. For virus density values higher than the critical value, the epidemic duration becomes extremely prolonged. Additionally, the effect of the closed system population size revealed interesting properties. All these results, together with an investigation of the effectiveness of applying physical contact restriction measures, document scientifically their worthiness, while they also demonstrate the limits for which herd immunity holds safely. Finally, the model has been compared against real epidemic data in the case of Greece, which imposed restrictive measures consistently and in time.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The scope of this work is to serve as a guiding tool against subjective estimations on real pandemic situations (mainly due to the inability to acquire objective real data over whole populations). The previously introduced model of closed self-organized criticality (SOC), is adapted in the case of a virus-induced epidemic. In this version this physical model can distinguish the virus spread according to the virus aggressiveness. The study presented, highlights the critical value of virus density over a population. For low values of the initial virus density (lower than the critical value) it is proved that the virus-diffusion behavior is safe and quantitatively similar to usual real epidemical data. However, it is revealed that very close to the critical point, the critical slowing-down (CSD) phenomenon, introduced by the theory of critical phenomena, emerges, leading to a tremendous increase of both the percentage of active carriers and the duration of the epidemic. A behavior of the epidemic obeying to a second order phase transition, also occurs. For virus density values higher than the critical value, the epidemic duration becomes extremely prolonged. Additionally, the effect of the closed system population size revealed interesting properties. All these results, together with an investigation of the effectiveness of applying physical contact restriction measures, document scientifically their worthiness, while they also demonstrate the limits for which herd immunity holds safely. Finally, the model has been compared against real epidemic data in the case of Greece, which imposed restrictive measures consistently and in time.
Subject
  • Virology
  • Epidemics
  • Viruses
  • Gases
  • Biological hazards
  • Chaos theory
  • Critical phenomena
  • 1898 in biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software