AttributesValues
type
value
  • The development of novel digital auscultation techniques has become highly significant in the context of the outburst of the pandemic COVID 19. The present work reports the spectral, nonlinear time series, fractal, and complexity analysis of vesicular (VB) and bronchial (BB) breath signals. The analysis is carried out with 37 breath sound signals. The spectral analysis brings out the signatures of VB and BB through the power spectral density plot and wavelet scalogram. The dynamics of airflow through the respiratory tract during VB and BB are investigated using the nonlinear time series and complexity analyses in terms of the phase portrait, fractal dimension, Hurst exponent, and sample entropy. The higher degree of chaoticity in BB relative to VB is unwrapped through the maximal Lyapunov exponent. The principal component analysis helps in classifying VB and BB sound signals through the feature extraction from the power spectral density data. The method proposed in the present work is simple, cost-effective, and sensitive, with a far-reaching potential of addressing and diagnosing the current issue of COVID 19 through lung auscultation.
part of
is abstract of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software