AttributesValues
type
value
  • Turnip crinkle virus contains a T-shaped, ribosome-binding, translation enhancer (TSS) in its 3’UTR that serves as a hub for interactions throughout the region. The viral RNA-dependent RNA polymerase (RdRp) causes the TSS/surrounding region to undergo a conformational shift postulated to inhibit translation. Using optical tweezers (OT) and steered molecular dynamic simulations (SMD), we found that the unusual stability of pseudoknotted element H4a/Ψ(3) required five upstream adenylates, and H4a/Ψ(3) was necessary for cooperative association of two other hairpins (H5/H4b) in Mg(2+). SMD recapitulated the TSS unfolding order in the absence of Mg(2+), showed dependence of the resistance to pulling on the 3D orientation and gave structural insights into the measured contour lengths of the TSS structure elements. Adenylate mutations eliminated one-site RdRp binding to the 3’UTR, suggesting that RdRp binding to the adenylates disrupts H4a/Ψ(3), leading to loss of H5/H4b interaction and promoting a conformational switch interrupting translation and promoting replication. DOI: http://dx.doi.org/10.7554/eLife.22883.001
subject
  • RNA
  • Gene expression
  • EC 2.7.7
  • Scientific modeling
  • Viral plant pathogens and diseases
  • 1986 introductions
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software