AttributesValues
type
value
  • Heart disease is considered as one of the major causes of death throughout the world. It cannot be easily predicted by the medical practitioners as it is a difficult task which demands expertise and higher knowledge for prediction. Currently, the recent development in medical supportive technologies based on data mining, machine learning plays an important role in predicting cardiovascular diseases. In this paper, we propose a new hybrid approach to predict cardiovascular disease using different machine learning techniques such as Logistic Regression (LR), Adaptive Boosting (AdaBoostM1), Multi-Objective Evolutionary Fuzzy Classifier (MOEFC), Fuzzy Unordered Rule Induction (FURIA), Genetic Fuzzy System-LogitBoost (GFS-LB) and Fuzzy Hybrid Genetic Based Machine Learning (FH-GBML). For this purpose, the accuracy and results of each classifier have been compared, with the best classifier chosen for a more accurate cardiovascular prediction. With this objective, we use two free software (Weka and Keel).
Subject
  • Learning
  • Data mining
  • Machine learning
  • Heart diseases
  • Cybernetics
  • RTT
  • RTTEM
  • Data mining and machine learning software
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software