About: The demand for production of glycoproteins from mammalian cell culture continues with an increased number of approvals as biopharmaceuticals for the treatment of unmet medical needs. This is particularly the case for humanized monoclonal antibodies which are the largest and fastest growing class of therapeutic pharmaceuticals. This demand has fostered efforts to improve the efficiency of production as well as to address the quality of the final product. Chinese hamster ovary cells are the predominant hosts for stable transfection and high efficiency production on a large scale. Specific productivity of recombinant glycoproteins from these cells can be expected to be above 50 pg/cell/day giving rise to culture systems with titers of around 5 g/L if appropriate fed-batch systems are employed. Cell engineering can delay the onset of programmed cell death to ensure prolonged maintenance of productive viable cells. The clinical efficacy and quality of the final product can be improved by strategic metabolic engineering. The best example of this is the targeted production of afucosylated antibodies with enhanced antibody-dependent cell cytotoxicity, an important function for use in cancer therapies. The development of culture media from non-animal sources continues and is important to ensure products of consistent quality and without the potential danger of contamination. Process efficiencies may also be improved by employing disposable bioreactors with the associated minimization of downtime. Finally, advances in downstream processing are needed to handle the increased supply of product from the bioreactor but maintaining the high purity demanded of these biopharmaceuticals.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The demand for production of glycoproteins from mammalian cell culture continues with an increased number of approvals as biopharmaceuticals for the treatment of unmet medical needs. This is particularly the case for humanized monoclonal antibodies which are the largest and fastest growing class of therapeutic pharmaceuticals. This demand has fostered efforts to improve the efficiency of production as well as to address the quality of the final product. Chinese hamster ovary cells are the predominant hosts for stable transfection and high efficiency production on a large scale. Specific productivity of recombinant glycoproteins from these cells can be expected to be above 50 pg/cell/day giving rise to culture systems with titers of around 5 g/L if appropriate fed-batch systems are employed. Cell engineering can delay the onset of programmed cell death to ensure prolonged maintenance of productive viable cells. The clinical efficacy and quality of the final product can be improved by strategic metabolic engineering. The best example of this is the targeted production of afucosylated antibodies with enhanced antibody-dependent cell cytotoxicity, an important function for use in cancer therapies. The development of culture media from non-animal sources continues and is important to ensure products of consistent quality and without the potential danger of contamination. Process efficiencies may also be improved by employing disposable bioreactors with the associated minimization of downtime. Finally, advances in downstream processing are needed to handle the increased supply of product from the bioreactor but maintaining the high purity demanded of these biopharmaceuticals.
Subject
  • Biotechnology
  • Programmed cell death
  • Biological engineering
  • Rodent cell lines
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software