About: BACKGROUND: Coronavirus disease (COVID-19) has spread explosively worldwide since the beginning of 2020. According to a multinational consensus statement from the Fleischner Society, computed tomography (CT) is a relevant screening tool due to its higher sensitivity for detecting early pneumonic changes. However, physicians are extremely occupied fighting COVID-19 in this era of worldwide crisis. Thus, it is crucial to accelerate the development of an artificial intelligence (AI) diagnostic tool to support physicians. OBJECTIVE: We aimed to rapidly develop an AI technique to diagnose COVID-19 pneumonia in CT images and differentiate it from non–COVID-19 pneumonia and nonpneumonia diseases. METHODS: A simple 2D deep learning framework, named the fast-track COVID-19 classification network (FCONet), was developed to diagnose COVID-19 pneumonia based on a single chest CT image. FCONet was developed by transfer learning using one of four state-of-the-art pretrained deep learning models (VGG16, ResNet-50, Inception-v3, or Xception) as a backbone. For training and testing of FCONet, we collected 3993 chest CT images of patients with COVID-19 pneumonia, other pneumonia, and nonpneumonia diseases from Wonkwang University Hospital, Chonnam National University Hospital, and the Italian Society of Medical and Interventional Radiology public database. These CT images were split into a training set and a testing set at a ratio of 8:2. For the testing data set, the diagnostic performance of the four pretrained FCONet models to diagnose COVID-19 pneumonia was compared. In addition, we tested the FCONet models on an external testing data set extracted from embedded low-quality chest CT images of COVID-19 pneumonia in recently published papers. RESULTS: Among the four pretrained models of FCONet, ResNet-50 showed excellent diagnostic performance (sensitivity 99.58%, specificity 100.00%, and accuracy 99.87%) and outperformed the other three pretrained models in the testing data set. In the additional external testing data set using low-quality CT images, the detection accuracy of the ResNet-50 model was the highest (96.97%), followed by Xception, Inception-v3, and VGG16 (90.71%, 89.38%, and 87.12%, respectively). CONCLUSIONS: FCONet, a simple 2D deep learning framework based on a single chest CT image, provides excellent diagnostic performance in detecting COVID-19 pneumonia. Based on our testing data set, the FCONet model based on ResNet-50 appears to be the best model, as it outperformed other FCONet models based on VGG16, Xception, and Inception-v3.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • BACKGROUND: Coronavirus disease (COVID-19) has spread explosively worldwide since the beginning of 2020. According to a multinational consensus statement from the Fleischner Society, computed tomography (CT) is a relevant screening tool due to its higher sensitivity for detecting early pneumonic changes. However, physicians are extremely occupied fighting COVID-19 in this era of worldwide crisis. Thus, it is crucial to accelerate the development of an artificial intelligence (AI) diagnostic tool to support physicians. OBJECTIVE: We aimed to rapidly develop an AI technique to diagnose COVID-19 pneumonia in CT images and differentiate it from non–COVID-19 pneumonia and nonpneumonia diseases. METHODS: A simple 2D deep learning framework, named the fast-track COVID-19 classification network (FCONet), was developed to diagnose COVID-19 pneumonia based on a single chest CT image. FCONet was developed by transfer learning using one of four state-of-the-art pretrained deep learning models (VGG16, ResNet-50, Inception-v3, or Xception) as a backbone. For training and testing of FCONet, we collected 3993 chest CT images of patients with COVID-19 pneumonia, other pneumonia, and nonpneumonia diseases from Wonkwang University Hospital, Chonnam National University Hospital, and the Italian Society of Medical and Interventional Radiology public database. These CT images were split into a training set and a testing set at a ratio of 8:2. For the testing data set, the diagnostic performance of the four pretrained FCONet models to diagnose COVID-19 pneumonia was compared. In addition, we tested the FCONet models on an external testing data set extracted from embedded low-quality chest CT images of COVID-19 pneumonia in recently published papers. RESULTS: Among the four pretrained models of FCONet, ResNet-50 showed excellent diagnostic performance (sensitivity 99.58%, specificity 100.00%, and accuracy 99.87%) and outperformed the other three pretrained models in the testing data set. In the additional external testing data set using low-quality CT images, the detection accuracy of the ResNet-50 model was the highest (96.97%), followed by Xception, Inception-v3, and VGG16 (90.71%, 89.38%, and 87.12%, respectively). CONCLUSIONS: FCONet, a simple 2D deep learning framework based on a single chest CT image, provides excellent diagnostic performance in detecting COVID-19 pneumonia. Based on our testing data set, the FCONet model based on ResNet-50 appears to be the best model, as it outperformed other FCONet models based on VGG16, Xception, and Inception-v3.
part of
is abstract of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software