About: BACKGROUND: Communicable disease outbreaks of novel or existing pathogens threaten human health around the globe. It would be desirable to rapidly characterize such outbreaks and develop accurate projections of their duration and cumulative size even when limited preliminary data are available. Here we develop a mathematical model to aid public health authorities in tracking the expansion and contraction of outbreaks with explicit representation of factors (other than population immunity) that may slow epidemic growth. METHODOLOGY: The Incidence Decay and Exponential Adjustment (IDEA) model is a parsimonious function that uses the basic reproduction number R(0), along with a discounting factor to project the growth of outbreaks using only basic epidemiological information (e.g., daily incidence counts). PRINCIPAL FINDINGS: Compared to simulated data, IDEA provides highly accurate estimates of total size and duration for a given outbreak when R(0) is low or moderate, and also identifies turning points or new waves. When tested with an outbreak of pandemic influenza A (H1N1), the model generates estimated incidence at the i+1(th) serial interval using data from the i(th) serial interval within an average of 20% of actual incidence. CONCLUSIONS AND SIGNIFICANCE: This model for communicable disease outbreaks provides rapid assessments of outbreak growth and public health interventions. Further evaluation in the context of real-world outbreaks will establish the utility of IDEA as a tool for front-line epidemiologists.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • BACKGROUND: Communicable disease outbreaks of novel or existing pathogens threaten human health around the globe. It would be desirable to rapidly characterize such outbreaks and develop accurate projections of their duration and cumulative size even when limited preliminary data are available. Here we develop a mathematical model to aid public health authorities in tracking the expansion and contraction of outbreaks with explicit representation of factors (other than population immunity) that may slow epidemic growth. METHODOLOGY: The Incidence Decay and Exponential Adjustment (IDEA) model is a parsimonious function that uses the basic reproduction number R(0), along with a discounting factor to project the growth of outbreaks using only basic epidemiological information (e.g., daily incidence counts). PRINCIPAL FINDINGS: Compared to simulated data, IDEA provides highly accurate estimates of total size and duration for a given outbreak when R(0) is low or moderate, and also identifies turning points or new waves. When tested with an outbreak of pandemic influenza A (H1N1), the model generates estimated incidence at the i+1(th) serial interval using data from the i(th) serial interval within an average of 20% of actual incidence. CONCLUSIONS AND SIGNIFICANCE: This model for communicable disease outbreaks provides rapid assessments of outbreak growth and public health interventions. Further evaluation in the context of real-world outbreaks will establish the utility of IDEA as a tool for front-line epidemiologists.
subject
  • Epidemiology
  • Infectious diseases
  • Health policy
  • Thermodynamics
  • Conceptual modelling
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software