AttributesValues
type
value
  • Although we have a draft sequence of the human genome, little is known about how the chromatin fiber is packed in three-dimensional (3D) space, or how packing affects function (Jackson 2003). We know packing plays a major role; the rate of transcription of a typical gene can vary over eight orders of magnitude (Ivarie et al. 1983), but deleting local elements like promoters and enhancers reduces expression by less than 5000-fold in transient transfection assays where the 3D “context” is missing. Common sense suggests the fiber cannot be packed randomly, but elucidating what any underlying order might be has proved difficult. First, the foldings of the chromatin fiber have dimensions below the resolution (≈200 nm) of the light microscope (LM) and so can only be seen by electron microscopy (EM), but then the fixation required can distort structure. Second, DNA is so long and packed so tightly it breaks and/or aggregates easily on isolation. Third, chromatin is poised in a metastable state so small charge alterations trigger changes in structure and function, and replacing the natural environment with our buffers often promotes aggregation.
Subject
  • Curves
  • Helices
  • Geometric shapes
  • Molecular genetics
  • Nuclear substructures
  • Fellows of the American Association for the Advancement of Science
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software