AttributesValues
type
value
  • A novel composite supported liquid membrane has been prepared for ventilation air moisture recovery. The membrane is composed of three layers: two hydrophobic protective layers and a sandwiched hydrophilic support layer in which LiCl solution is immobilized to facilitate water vapor transfer. A test is conducted to measure the moisture permeation rate through the composite membrane. Various resistances in the cell and in the composite membrane are clarified. Linear equilibrium relations between humidity, temperature, and LiCl concentration in the liquid solution layer are obtained to aid in the model set-up. It has been found that the mean moisture permeation rate through the composite membrane is around 1.14 × 10(−4) kg m(−2) s(−1), almost two times higher than that through a solid hydrophilic cellulose acetate membrane with comparative thickness. Further, the supported liquid layer only accounts for 12% of the total moisture transfer resistance in the cell, indicating that there is much potential for further performance improvement.
subject
  • Thermodynamics
  • Atmospheric thermodynamics
  • Chemical properties
  • Physical chemistry
  • Intermolecular forces
  • Physical quantities
  • Psychrometrics
  • Thermodynamic cycles
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software