AttributesValues
type
value
  • Supervisory Control and Data Acquisition (SCADA) systems used in wind turbines for monitoring the health and performance of a wind farm can suffer from data loss due to sensor failure, transmission link breakdown or network congestion. Sensory data is used for important control decisions and such data loss can make the failures harder to detect. This work proposes various solutions to reconstruct the lost information of important SCADA parameters using Linear and non-linear Artificial Intelligence (AI) algorithms. It comprises of three major contributions; (1) signal reconstruction from other available SCADA parameters, (2) comparison of linear and non-linear AI models, and (3) generalization of the AI algorithms between turbines. Experimental results demonstrate the effectiveness of the developed methodologies for reconstruction of the lost information for valuable planning decisions.
subject
  • Classification algorithms
  • Automation
  • Teletraffic
  • Control engineering
  • Electric power
  • Sustainable technologies
  • SCADA
  • Telemetry
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software