AttributesValues
type
value
  • In this paper, we introduce an unsupervised method for the parcellation of the Corpus Callosum (CC) from MRI images. Since there are no visible landmarks within the structure that explicit its parcels, non-geometric CC parcellation is a challenging task especially that almost of proposed methods are geometric or data-based. In fact, in order to subdivide the CC from brain sagittal MRI scans, we adopt the probabilistic neural network as a clustering technique. Then, we use a cluster validity measure based on the maximum entropy (Vmep) to obtain the optimal number of classes. After that, we obtain the isolated CC that we parcel automatically using SLIC (Simple Linear Iterative Clustering) as superpixel segmentation technique. The obtained results on two challenging public datasets prove the performance of the proposed method against geometric methods from the state of the art. Indeed, as best as we know, it is the first work that investigates the validation of a CC parcellation method on ground-truth datasets using many objective metrics.
subject
  • Magnetic resonance imaging
  • Information theory
  • Geometry
  • 1973 introductions
  • American inventions
  • Cryogenics
  • Discovery and invention controversies
  • Patent law
  • Basic concepts in set theory
  • Combinatorics
  • Set families
  • 20th-century inventions
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software