About: The early stages of the development of a finite element method (FEM) based computational tool for numerically simulating mineral-slurry transport involving both Newtonian and non-Newtonian flows are described in this work. The rationale behind the conception, design and implementation of the referred object-oriented programming tool is thus initially highlighted. A particular emphasis is put on several architectural aspects accounted for and object class hierarchies defined during the development of the tool. Next one of the main modules composing the tool under development is further described. Finally, as a means of illustration, the use of the FEM based tool for simulating two-dimensional laminar flows is discussed. More specifically, canonical configurations widely studied in the past are firstly accounted for. A more practical application involving the simulation of a mineral-slurry handling device is then studied using the power-law rheological model. The results from the simulations carried out highlight the usefulness of the tool for realistically predicting the associated flow behavior. The FEM based tool discussed in this work will be used in future for carrying out high-fidelity numerical simulations of turbulent multiphase flows including fluid-particle interactions.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The early stages of the development of a finite element method (FEM) based computational tool for numerically simulating mineral-slurry transport involving both Newtonian and non-Newtonian flows are described in this work. The rationale behind the conception, design and implementation of the referred object-oriented programming tool is thus initially highlighted. A particular emphasis is put on several architectural aspects accounted for and object class hierarchies defined during the development of the tool. Next one of the main modules composing the tool under development is further described. Finally, as a means of illustration, the use of the FEM based tool for simulating two-dimensional laminar flows is discussed. More specifically, canonical configurations widely studied in the past are firstly accounted for. A more practical application involving the simulation of a mineral-slurry handling device is then studied using the power-law rheological model. The results from the simulations carried out highlight the usefulness of the tool for realistically predicting the associated flow behavior. The FEM based tool discussed in this work will be used in future for carrying out high-fidelity numerical simulations of turbulent multiphase flows including fluid-particle interactions.
subject
  • Structural analysis
  • Continuum mechanics
  • Exponentials
  • Object-oriented programming
  • Partial differential equations
  • Natural materials
  • Numerical differential equations
  • Finite element method
  • Computational electromagnetics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software