About: Abstract Complexity is a useful frame of reference for disaster management and understanding population health. An important means to unraveling the complexities of disaster management is to recognize the interdependencies between health care and broader social systems and how they intersect to promote health and resilience before, during and after a crisis. While recent literature has expanded our understanding of the complexity of disasters at the macro level, few studies have examined empirically how dynamic elements of critical social infrastructure at the micro level influence community capacity. The purpose of this study was to explore empirically the complexity of disasters, to determine levers for action where interventions can be used to facilitate collaborative action and promote health among high risk populations. A second purpose was to build a framework for critical social infrastructure and develop a model to identify potential points of intervention to promote population health and resilience. A community-based participatory research design was used in nine focus group consultations (n = 143) held in five communities in Canada, between October 2010 and March 2011, using the Structured Interview Matrix facilitation technique. The findings underscore the importance of interconnectedness of hard and soft systems at the micro level, with culture providing the backdrop for the social fabric of each community. Open coding drawing upon the tenets of complexity theory was used to develop four core themes that provide structure for the framework that evolved; they relate to dynamic context, situational awareness and connectedness, flexible planning, and collaboration, which are needed to foster adaptive responses to disasters. Seven action recommendations are presented, to promote community resilience and population health.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Complexity is a useful frame of reference for disaster management and understanding population health. An important means to unraveling the complexities of disaster management is to recognize the interdependencies between health care and broader social systems and how they intersect to promote health and resilience before, during and after a crisis. While recent literature has expanded our understanding of the complexity of disasters at the macro level, few studies have examined empirically how dynamic elements of critical social infrastructure at the micro level influence community capacity. The purpose of this study was to explore empirically the complexity of disasters, to determine levers for action where interventions can be used to facilitate collaborative action and promote health among high risk populations. A second purpose was to build a framework for critical social infrastructure and develop a model to identify potential points of intervention to promote population health and resilience. A community-based participatory research design was used in nine focus group consultations (n = 143) held in five communities in Canada, between October 2010 and March 2011, using the Structured Interview Matrix facilitation technique. The findings underscore the importance of interconnectedness of hard and soft systems at the micro level, with culture providing the backdrop for the social fabric of each community. Open coding drawing upon the tenets of complexity theory was used to develop four core themes that provide structure for the framework that evolved; they relate to dynamic context, situational awareness and connectedness, flexible planning, and collaboration, which are needed to foster adaptive responses to disasters. Seven action recommendations are presented, to promote community resilience and population health.
Subject
  • Primary care
  • Countries in North America
  • Job interview
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software