About: BACKGROUND: Despite the early development of Google Flu Trends in 2009, standards for digital epidemiology methods have not been established and research from European countries is scarce. AIM: In this article, we study the use of web search queries to monitor influenza-like illness (ILI) rates in the Netherlands in real time. METHODS: In this retrospective analysis, we simulated the weekly use of a prediction model for estimating the then-current ILI incidence across the 2017/18 influenza season solely based on Google search query data. We used weekly ILI data as reported to The European Surveillance System (TESSY) each week, and we removed the then-last 4 weeks from our dataset. We then fitted a prediction model based on the then-most-recent search query data from Google Trends to fill the 4-week gap (‘Nowcasting’). Lasso regression, in combination with cross-validation, was applied to select predictors and to fit the 52 models, one for each week of the season. RESULTS: The models provided accurate predictions with a mean and maximum absolute error of 1.40 (95% confidence interval: 1.09–1.75) and 6.36 per 10,000 population. The onset, peak and end of the epidemic were predicted with an error of 1, 3 and 2 weeks, respectively. The number of search terms retained as predictors ranged from three to five, with one keyword, ‘griep’ (‘flu’), having the most weight in all models. DISCUSSION: This study demonstrates the feasibility of accurate, real-time ILI incidence predictions in the Netherlands using Google search query data.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • BACKGROUND: Despite the early development of Google Flu Trends in 2009, standards for digital epidemiology methods have not been established and research from European countries is scarce. AIM: In this article, we study the use of web search queries to monitor influenza-like illness (ILI) rates in the Netherlands in real time. METHODS: In this retrospective analysis, we simulated the weekly use of a prediction model for estimating the then-current ILI incidence across the 2017/18 influenza season solely based on Google search query data. We used weekly ILI data as reported to The European Surveillance System (TESSY) each week, and we removed the then-last 4 weeks from our dataset. We then fitted a prediction model based on the then-most-recent search query data from Google Trends to fill the 4-week gap (‘Nowcasting’). Lasso regression, in combination with cross-validation, was applied to select predictors and to fit the 52 models, one for each week of the season. RESULTS: The models provided accurate predictions with a mean and maximum absolute error of 1.40 (95% confidence interval: 1.09–1.75) and 6.36 per 10,000 population. The onset, peak and end of the epidemic were predicted with an error of 1, 3 and 2 weeks, respectively. The number of search terms retained as predictors ranged from three to five, with one keyword, ‘griep’ (‘flu’), having the most weight in all models. DISCUSSION: This study demonstrates the feasibility of accurate, real-time ILI incidence predictions in the Netherlands using Google search query data.
Subject
  • Influenza
  • Syndromes
  • Symptoms
  • Prediction
  • Clinical research
  • Medical signs
  • Regression variable selection
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software