AttributesValues
type
value
  • This paper studies the optimal control of an infectious spread based on common epidemic models with permanent immunity and no vaccine availability. Assuming limited isolation control and capacity constraints on the number of infections, an optimal quarantine control strategy that balances between the total number of infections and the overall isolation effort is derived from necessary optimality conditions. The specific optimal policy is then obtained by optimizing the switching times of this generalized strategy. In the case of a newly emerged disease, these results can be used in a data-driven receding horizon manner to improve actions as more data becomes available. The proposed approach is applied to publicly available data from the outbreak of SARS-CoV-2 in Germany. In particular, for minimizing the total number of infections or the number of isolated individuals, the simulations indicate that a sufficiently delayed and controlled release of the lock-down are optimal for overcoming the outbreak. The approach can support public health authorities to plan quarantine control policies.
subject
  • Virology
  • Prevention
  • Vaccination
  • Quarantine
  • Epidemics
  • Vaccines
  • Infectious diseases
  • Optimal control
  • Biological hazards
  • Cybernetics
  • Mathematical optimization
  • Quarantine facilities
  • Computational mathematics
  • Computer science
  • Control engineering
  • Control theory
  • 18th-century inventions
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software