About: Estimation of the inner state of volcanoes are important for understanding the mechanism of eruption and reduction of disaster risk. With the improvement in observation networks, data assimilation of internal magma state using time-history crustal deformation data observed at the surface is expected to be suitable for solving such problems. Using finite-element methods capable of modeling complex geometry is desirable for modeling the three-dimensional heterogeneous crust structure, and nonlinear time-history analysis is required for considering the change in material properties due to the movement of magma. Thus, many cases of large-scale finite-element analysis is required, and the computational cost incurred is expected to become a bottleneck. As a basic study towards data assimilation of internal magma state considering change in material properties of the crust, we demonstrated that many case analyses of volcano deformation problems can be conducted in a reasonable time frame by development of a crustal deformation analysis method accelerated by GPUs. For verification of the data assimilation method, we estimated the magma trend in an actual three-dimensional heterogeneous crust structure without temporal change in material properties. We confirmed that the magma movement trend can be reproduced using the model considering crust heterogeneity, while models disregarding three-dimensional crust structure resulted in wrong estimations. Thus, we can see that using finite-element methods capable of modeling three-dimensional heterogeneity for crustal deformation analysis is important for accurate magma state estimation.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Estimation of the inner state of volcanoes are important for understanding the mechanism of eruption and reduction of disaster risk. With the improvement in observation networks, data assimilation of internal magma state using time-history crustal deformation data observed at the surface is expected to be suitable for solving such problems. Using finite-element methods capable of modeling complex geometry is desirable for modeling the three-dimensional heterogeneous crust structure, and nonlinear time-history analysis is required for considering the change in material properties due to the movement of magma. Thus, many cases of large-scale finite-element analysis is required, and the computational cost incurred is expected to become a bottleneck. As a basic study towards data assimilation of internal magma state considering change in material properties of the crust, we demonstrated that many case analyses of volcano deformation problems can be conducted in a reasonable time frame by development of a crustal deformation analysis method accelerated by GPUs. For verification of the data assimilation method, we estimated the magma trend in an actual three-dimensional heterogeneous crust structure without temporal change in material properties. We confirmed that the magma movement trend can be reproduced using the model considering crust heterogeneity, while models disregarding three-dimensional crust structure resulted in wrong estimations. Thus, we can see that using finite-element methods capable of modeling three-dimensional heterogeneity for crustal deformation analysis is important for accurate magma state estimation.
Subject
  • Partial differential equations
  • OpenCL compute devices
  • Plate tectonics
  • Complex manifolds
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software