About: For the sake of solving the optimization problem of urban waste collection and transportation in China, a priority considered green vehicle routing problem (PCGVRP) model in a waste management system is constructed in this paper, and specific algorithms are designed to solve the model. We pay particular concern to the possibility of immediate waste collection services for high-priority waste bins, e.g., those containing hospital or medical waste, because the harmful waste needs to be collected immediately. Otherwise, these may cause dangerous or negative effects. From the perspective of environmental protection, the proposed PCGVRP model considers both greenhouse gas (GHG) emission costs and conventional waste management costs. Waste filling level (WFL) is considered with the deployment of sensors on waste bins to realize dynamic routes instead of fixed routes, so that the economy and efficiency of waste collection and transportation can be improved. The optimal solution is obtained by a local search hybrid algorithm (LSHA), that is, the initial optimal solution is obtained by particle swarm optimization (PSO) and then a local search is performed on the initial optimal solution, which will be optimized by a simulated annealing (SA) algorithm by virtue of the global search capability. Several instances are selected from the database of capacitated vehicle routing problem (CVRP) so as to test and verify the effectiveness of the proposed LSHA algorithm. In addition, to obtain credible results and conclusions, a case using data about waste collection and transportation is employed to verify the PCGVRP model, and the effectiveness and practicability of the model was tested by setting a series of values of bins’ number with high priority and WFLs. The results show that (1) the proposed model can achieve a 42.3% reduction of negative effect compared with the traditional one; (2) a certain value of WFL between 60% and 80% can realize high efficiency of the waste collection and transportation; and (3) the best specific value of WFL is determined by the number of waste bins with high priority. Finally, some constructive propositions are put forward for the Environmental Protection Administration and waste management institutions based on these conclusions.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • For the sake of solving the optimization problem of urban waste collection and transportation in China, a priority considered green vehicle routing problem (PCGVRP) model in a waste management system is constructed in this paper, and specific algorithms are designed to solve the model. We pay particular concern to the possibility of immediate waste collection services for high-priority waste bins, e.g., those containing hospital or medical waste, because the harmful waste needs to be collected immediately. Otherwise, these may cause dangerous or negative effects. From the perspective of environmental protection, the proposed PCGVRP model considers both greenhouse gas (GHG) emission costs and conventional waste management costs. Waste filling level (WFL) is considered with the deployment of sensors on waste bins to realize dynamic routes instead of fixed routes, so that the economy and efficiency of waste collection and transportation can be improved. The optimal solution is obtained by a local search hybrid algorithm (LSHA), that is, the initial optimal solution is obtained by particle swarm optimization (PSO) and then a local search is performed on the initial optimal solution, which will be optimized by a simulated annealing (SA) algorithm by virtue of the global search capability. Several instances are selected from the database of capacitated vehicle routing problem (CVRP) so as to test and verify the effectiveness of the proposed LSHA algorithm. In addition, to obtain credible results and conclusions, a case using data about waste collection and transportation is employed to verify the PCGVRP model, and the effectiveness and practicability of the model was tested by setting a series of values of bins’ number with high priority and WFLs. The results show that (1) the proposed model can achieve a 42.3% reduction of negative effect compared with the traditional one; (2) a certain value of WFL between 60% and 80% can realize high efficiency of the waste collection and transportation; and (3) the best specific value of WFL is determined by the number of waste bins with high priority. Finally, some constructive propositions are put forward for the Environmental Protection Administration and waste management institutions based on these conclusions.
Subject
  • Biological waste
  • NP-complete problems
  • Waste management
  • Environment of Taiwan
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software