About: We propose an on-chip mid-infrared (MIR) photonic spectroscopy platform for aerosol characterization to obtain highly discriminatory information on the chemistry of aerosol particles. Sensing of aerosols is crucial for various environmental, climactic, warfare threat detection, and pulmonary healthcare applications. Further, there are a number of unintended situations for potential exposure to bioaerosols such as viruses, bacteria, and fungi. For instance, the current pandemic scenario of COVID-19 occurring across the world. Currently, chemical characterization of aerosols is performed using FTIR spectroscopy yielding chemical fingerprinting because most of the vibrational and rotational transitions of chemical molecules fall in the MIR range; and Raman spectroscopy. Both techniques use free space bench-top geometries. Here, we propose miniaturized on-chip MIR photonics-based aerosol spectroscopy consisting of a broadband spiral-waveguide sensor that significantly enhances particle-light interaction to improve sensitivity. The spiral waveguides are made of a chalcogenide glass material (Ge23Sb7S70) which shows a broad transparency over IR range. We demonstrate the sensing of N-methyl aniline-based aerosol particles with the device. We anticipate that the sensor will readily complement existing photonic resonator-based particle sizing and counting techniques to develop a unified framework for on-chip integrated photonic aerosol spectroscopy.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • We propose an on-chip mid-infrared (MIR) photonic spectroscopy platform for aerosol characterization to obtain highly discriminatory information on the chemistry of aerosol particles. Sensing of aerosols is crucial for various environmental, climactic, warfare threat detection, and pulmonary healthcare applications. Further, there are a number of unintended situations for potential exposure to bioaerosols such as viruses, bacteria, and fungi. For instance, the current pandemic scenario of COVID-19 occurring across the world. Currently, chemical characterization of aerosols is performed using FTIR spectroscopy yielding chemical fingerprinting because most of the vibrational and rotational transitions of chemical molecules fall in the MIR range; and Raman spectroscopy. Both techniques use free space bench-top geometries. Here, we propose miniaturized on-chip MIR photonics-based aerosol spectroscopy consisting of a broadband spiral-waveguide sensor that significantly enhances particle-light interaction to improve sensitivity. The spiral waveguides are made of a chalcogenide glass material (Ge23Sb7S70) which shows a broad transparency over IR range. We demonstrate the sensing of N-methyl aniline-based aerosol particles with the device. We anticipate that the sensor will readily complement existing photonic resonator-based particle sizing and counting techniques to develop a unified framework for on-chip integrated photonic aerosol spectroscopy.
Subject
  • Aerosols
  • Digital electronics
  • Integrated circuits
  • Laboratory equipment
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software